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Outline 
n  Introduction & architectural issues 
n Data distribution 
n Distributed query processing 
n Distributed query optimization 
n Distributed transactions & concurrency control 
n Distributed reliability 
n Data replication 
n Parallel database systems 
q Database integration & querying 

q Schema matching 
q Schema mapping 

q Peer-to-Peer data management 
q Stream data management 
q MapReduce-based distributed data management 
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Problem Definition 

n Given existing databases with their Local 
Conceptual Schemas (LCSs), how to integrate 
the LCSs into a Global Conceptual Schema 
(GCS) 
l GCS is also called mediated schema 

n Bottom-up design process 
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Integration Alternatives 

n Physical integration 
l Source databases integrated and the integrated database is 

materialized 
l Data warehouses 

n Logical integration 
l Global conceptual schema is virtual and not materialized 
l Enterprise Information Integration (EII) 
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Data Warehouse Approach 
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Bottom-up Design 

n GCS (also called mediated schema) is defined 
first 
l Map LCSs to this schema 
l As in data warehouses 

n GCS is defined as an integration of parts of 
LCSs 
l Generate GCS and map LCSs to this GCS 
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GCS/LCS Relationship 

n Local-as-view 
l The GCS definition is assumed to exist, and each LCS is 

treated as a view definition over it 

n Global-as-view 
l The GCS is defined as a set of views over the LCSs 
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Database Integration 
Process 
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Recall Access Architecture 
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Database Integration Issues 

n Schema translation 
l Component database schemas translated to a common 

intermediate canonical representation 

n Schema generation 
l  Intermediate schemas are used to create a global 

conceptual schema 
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Schema Translation 

n What is the canonical data model? 
l Relational 
l Entity-relationship 

u DIKE 
l Object-oriented 

u ARTEMIS 
l Graph-oriented 

u DIPE, TranScm, COMA, Cupid 
u Preferable with emergence of XML 
u No common graph formalism 

n Mapping algorithms 
l These are well-known 
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Schema Generation 

n Schema matching 
l Finding the correspondences between multiple schemas 

n Schema integration 
l Creation of the GCS (or mediated schema) using the 

correspondences 

n Schema mapping 
l How to map data from local databases to the GCS 

n Important: sometimes the GCS is defined first 
and schema matching and schema mapping is 
done against this target GCS 
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Running Example 

EMP(ENO, ENAME, TITLE) 
PROJ(PNO, PNAME, BUDGET, LOC, CNAME) 
ASG(ENO, PNO, RESP, DUR) 
PAY(TITLE, SAL) 

Relational 

E-R Model 
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Schema Matching 

n Schema heterogeneity 
l Structural heterogeneity 

u Type conflicts 
u Dependency conflicts 
u Key conflicts 
u Behavioral conflicts 

l Semantic heterogeneity 
u More important and harder to deal with 
u Synonyms, homonyms, hypernyms 
u Different ontology 
u  Imprecise wording 
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Schema Matching (cont’d) 

n Other complications 
l  Insufficient schema and instance information 
l Unavailability of schema documentation 
l Subjectivity of matching 

n Issues that affect schema matching 
l Schema versus instance matching 
l Element versus structure level matching 
l Matching cardinality 
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Schema Matching Approaches 
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Linguistic Schema Matching 

n Use element names and other textual 
information (textual descriptions, annotations)  

n May use external sources (e.g., Thesauri) 
n 〈SC1.element-1 ≈ SC2.element-2, p,s〉 

l Element-1 in schema SC1 is similar to element-2 in schema 
SC2 if predicate p holds with a similarity value of s 

n Schema level 
l Deal with names of schema elements 
l Handle cases such as synonyms, homonyms, hypernyms, 

data type similarities 

n Instance level 
l Focus on information retrieval techniques (e.g., word 

frequencies, key terms) 
l  “Deduce” similarities from these 
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Linguistic Matchers 

n Use a set of linguistic (terminological) rules 
n Basic rules can be hand-crafted or may be 

discovered from outside sources (e.g., WordNet) 
n Predicate p and similarity value s  

l hand-crafted ⇒ specified,  
l discovered ⇒ may be computed or specified by an expert 

after discovery 

n Examples 
l  〈uppercase names ≈ lower case names, true, 1.0〉 
l  〈uppercase names ≈ capitalized names, true, 1.0〉 
l  〈capitalized names ≈ lower case names, true, 1.0〉 
l  〈DB1.ASG ≈ DB2.WORKS_IN, true, 0.8〉 
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Automatic Discovery of 
Name Similarities 

n Affixes 
l Common prefixes and suffixes between two element name strings 

n N-grams 
l Comparing how many substrings of length n are common between 

the two name strings 

n Edit distance 
l Number of character modifications (additions, deletions, 

insertions) that needs to be performed to convert one string into 
the other 

n Soundex code 
l Phonetic similarity between names based on their soundex codes 

n Also look at data types 
l Data type similarity may suggest relationship 
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N-gram Example 

n 3-grams of string “Responsibility” are the following: 

lRes  l sib 

libi  l esp 

lbip  l spo 

lili  l pon 

llit  l  ons 

lity  l  nsi 

n 3-grams of string “Resp” are 
l Res 

l  esp 

n 3-gram similarity: 2/12 =  0.17 
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Edit Distance Example 

n Again consider “Responsibility” and “Resp” 

n To convert “Responsibility” to “Resp” 

l Delete characters “o”, “n”, “s”, “i”, “b”, “i”, “l”, “i”, “t”, “y” 

n To convert “Resp” to “Responsibility” 

l Add characters “o”, “n”, “s”, “i”, “b”, “i”, “l”, “i”, “t”, “y” 

n The number of edit operations required is 10 

n Similarity is 1 − (10/14) = 0.29 
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Constraint-based Matchers 

n Data always have constraints – use them 
l Data type information 
l Value ranges 
l … 

n Examples 
l RESP and RESPONSIBILITY: n-gram similarity = 0.17, 

edit distance similarity = 0.19 (low) 
l  If they come from the same domain, this may increase their 

similarity value 
l ENO in relational, WORKER.NUMBER and 

PROJECT.NUMBER in E-R 
l ENO and WORKER.NUMBER may have type INTEGER 

while PROJECT.NUMBER may have STRING 
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Constraint-based Structural 
Matching 

n If two schema elements are structurally 
similar, then there is a higher likelihood that 
they represent the same concept 

n Structural similarity: 
l Same properties (attributes) 

l  “Neighborhood” similarity 

u Using graph representation 

u The set of nodes that can be reached within a 
particular path length from a node are the neighbors of 
that node 

u  If two concepts (nodes) have similar set of neighbors, 
they are likely to represent the same concept 
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Learning-based Schema 
Matching 

n Use machine learning techniques to determine 
schema matches 

n Classification problem: classify concepts from 
various schemas into classes according to their 
similarity. Those that fall into the same class 
represent similar concepts 

n Similarity is defined according to features of 
data instances 

n Classification is “learned” from a training set 
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Learning-based Schema 
Matching 
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Combined Schema Matching 
Approaches 

n Use multiple matchers 

l Each matcher focuses on one area (name, etc) 

n Meta-matcher integrates these into one 
prediction 

n Integration may be simple (take average of 
similarity values) or more complex (see Fagin’s 
work) 
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Schema Integration 

n Use the correspondences to create a GCS 
n Mainly a manual process, although rules can help 
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Binary Integration Methods 
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N-ary Integration Methods 
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Schema Mapping 

n Mapping data from each local database 
(source) to GCS (target) while preserving 
semantic consistency as defined in both source 
and target. 

n Data warehouses ⇒ actual translation 

n Data integration systems  ⇒ discover 
mappings that can be used in the query 
processing phase 

n Mapping creation 

n Mapping maintenance 
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Mapping Creation 

Given 
l A source LCS 

l A target GCS 

l A set of value correspondences discovered                                                    
during schema matching phase 

Produce a set of queries that, when executed, will 
create GCS data instances from the source 
data. 

We are looking, for each Tk, a query Qk that is 
defined on a (possibly proper) subset of the 
relations in S such that, when executed, will 
generate data for Ti from the source relations 

[S = {Si}]
[T = {Ti}]

[V = {Vi}]
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Mapping Creation Algorithm 

General idea: 
 
n Consider each Tk in turn. Divide Vk into 

subsets                       such that each      
specifies one possible way that values of Tk can 
be computed. 

n Each      can be mapped to a query     that, 
when executed, would generate some of Tk’s 
data.   

n Union of these queries gives  
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