
CS742 – Distributed & Parallel DBMS Page 9.1 M. Tamer Özsu

Outline
n  Introduction & architectural issues
n Data distribution
n Distributed query processing
n Distributed query optimization
n Distributed transactions & concurrency control
n Distributed reliability
n Data replication
n Parallel database systems
q Database integration & querying

q Schema matching
q Schema mapping

q Peer-to-Peer data management
q Stream data management
q MapReduce-based distributed data management

CS742 – Distributed & Parallel DBMS Page 9.2 M. Tamer Özsu

Problem Definition

n Given existing databases with their Local
Conceptual Schemas (LCSs), how to integrate
the LCSs into a Global Conceptual Schema
(GCS)
l GCS is also called mediated schema

n Bottom-up design process

CS742 – Distributed & Parallel DBMS Page 9.3 M. Tamer Özsu

Integration Alternatives

n Physical integration
l Source databases integrated and the integrated database is

materialized
l Data warehouses

n Logical integration
l Global conceptual schema is virtual and not materialized
l Enterprise Information Integration (EII)

CS742 – Distributed & Parallel DBMS Page 9.4 M. Tamer Özsu

Data Warehouse Approach

CS742 – Distributed & Parallel DBMS Page 9.5 M. Tamer Özsu

Bottom-up Design

n GCS (also called mediated schema) is defined
first
l Map LCSs to this schema
l As in data warehouses

n GCS is defined as an integration of parts of
LCSs
l Generate GCS and map LCSs to this GCS

CS742 – Distributed & Parallel DBMS Page 9.6 M. Tamer Özsu

GCS/LCS Relationship

n Local-as-view
l The GCS definition is assumed to exist, and each LCS is

treated as a view definition over it

n Global-as-view
l The GCS is defined as a set of views over the LCSs

CS742 – Distributed & Parallel DBMS Page 9.7 M. Tamer Özsu

Database Integration
Process

CS742 – Distributed & Parallel DBMS Page 9.8 M. Tamer Özsu

Recall Access Architecture

CS742 – Distributed & Parallel DBMS Page 9.9 M. Tamer Özsu

Database Integration Issues

n Schema translation
l Component database schemas translated to a common

intermediate canonical representation

n Schema generation
l  Intermediate schemas are used to create a global

conceptual schema

CS742 – Distributed & Parallel DBMS Page 9.10 M. Tamer Özsu

Schema Translation

n What is the canonical data model?
l Relational
l Entity-relationship

u DIKE
l Object-oriented

u ARTEMIS
l Graph-oriented

u DIPE, TranScm, COMA, Cupid
u Preferable with emergence of XML
u No common graph formalism

n Mapping algorithms
l These are well-known

CS742 – Distributed & Parallel DBMS Page 9.11 M. Tamer Özsu

Schema Generation

n Schema matching
l Finding the correspondences between multiple schemas

n Schema integration
l Creation of the GCS (or mediated schema) using the

correspondences

n Schema mapping
l How to map data from local databases to the GCS

n Important: sometimes the GCS is defined first
and schema matching and schema mapping is
done against this target GCS

CS742 – Distributed & Parallel DBMS Page 9.12 M. Tamer Özsu

Running Example

EMP(ENO, ENAME, TITLE)
PROJ(PNO, PNAME, BUDGET, LOC, CNAME)
ASG(ENO, PNO, RESP, DUR)
PAY(TITLE, SAL)

Relational

E-R Model

CS742 – Distributed & Parallel DBMS Page 9.13 M. Tamer Özsu

Schema Matching

n Schema heterogeneity
l Structural heterogeneity

u Type conflicts
u Dependency conflicts
u Key conflicts
u Behavioral conflicts

l Semantic heterogeneity
u More important and harder to deal with
u Synonyms, homonyms, hypernyms
u Different ontology
u  Imprecise wording

CS742 – Distributed & Parallel DBMS Page 9.14 M. Tamer Özsu

Schema Matching (cont’d)

n Other complications
l  Insufficient schema and instance information
l Unavailability of schema documentation
l Subjectivity of matching

n Issues that affect schema matching
l Schema versus instance matching
l Element versus structure level matching
l Matching cardinality

CS742 – Distributed & Parallel DBMS Page 9.15 M. Tamer Özsu

Schema Matching Approaches

CS742 – Distributed & Parallel DBMS Page 9.16 M. Tamer Özsu

Linguistic Schema Matching

n Use element names and other textual
information (textual descriptions, annotations)

n May use external sources (e.g., Thesauri)
n 〈SC1.element-1 ≈ SC2.element-2, p,s〉

l Element-1 in schema SC1 is similar to element-2 in schema
SC2 if predicate p holds with a similarity value of s

n Schema level
l Deal with names of schema elements
l Handle cases such as synonyms, homonyms, hypernyms,

data type similarities

n Instance level
l Focus on information retrieval techniques (e.g., word

frequencies, key terms)
l  “Deduce” similarities from these

CS742 – Distributed & Parallel DBMS Page 9.17 M. Tamer Özsu

Linguistic Matchers

n Use a set of linguistic (terminological) rules
n Basic rules can be hand-crafted or may be

discovered from outside sources (e.g., WordNet)
n Predicate p and similarity value s

l hand-crafted ⇒ specified,
l discovered ⇒ may be computed or specified by an expert

after discovery

n Examples
l  〈uppercase names ≈ lower case names, true, 1.0〉
l  〈uppercase names ≈ capitalized names, true, 1.0〉
l  〈capitalized names ≈ lower case names, true, 1.0〉
l  〈DB1.ASG ≈ DB2.WORKS_IN, true, 0.8〉

CS742 – Distributed & Parallel DBMS Page 9.18 M. Tamer Özsu

Automatic Discovery of
Name Similarities

n Affixes
l Common prefixes and suffixes between two element name strings

n N-grams
l Comparing how many substrings of length n are common between

the two name strings

n Edit distance
l Number of character modifications (additions, deletions,

insertions) that needs to be performed to convert one string into
the other

n Soundex code
l Phonetic similarity between names based on their soundex codes

n Also look at data types
l Data type similarity may suggest relationship

CS742 – Distributed & Parallel DBMS Page 9.19 M. Tamer Özsu

N-gram Example

n 3-grams of string “Responsibility” are the following:

lRes l sib

libi l esp

lbip l spo

lili l pon

llit l ons

lity l nsi

n 3-grams of string “Resp” are
l Res

l  esp

n 3-gram similarity: 2/12 = 0.17

CS742 – Distributed & Parallel DBMS Page 9.20 M. Tamer Özsu

Edit Distance Example

n Again consider “Responsibility” and “Resp”

n To convert “Responsibility” to “Resp”

l Delete characters “o”, “n”, “s”, “i”, “b”, “i”, “l”, “i”, “t”, “y”

n To convert “Resp” to “Responsibility”

l Add characters “o”, “n”, “s”, “i”, “b”, “i”, “l”, “i”, “t”, “y”

n The number of edit operations required is 10

n Similarity is 1 − (10/14) = 0.29

CS742 – Distributed & Parallel DBMS Page 9.21 M. Tamer Özsu

Constraint-based Matchers

n Data always have constraints – use them
l Data type information
l Value ranges
l …

n Examples
l RESP and RESPONSIBILITY: n-gram similarity = 0.17,

edit distance similarity = 0.19 (low)
l  If they come from the same domain, this may increase their

similarity value
l ENO in relational, WORKER.NUMBER and

PROJECT.NUMBER in E-R
l ENO and WORKER.NUMBER may have type INTEGER

while PROJECT.NUMBER may have STRING

CS742 – Distributed & Parallel DBMS Page 9.22 M. Tamer Özsu

Constraint-based Structural
Matching

n If two schema elements are structurally
similar, then there is a higher likelihood that
they represent the same concept

n Structural similarity:
l Same properties (attributes)

l  “Neighborhood” similarity

u Using graph representation

u The set of nodes that can be reached within a
particular path length from a node are the neighbors of
that node

u  If two concepts (nodes) have similar set of neighbors,
they are likely to represent the same concept

CS742 – Distributed & Parallel DBMS Page 9.23 M. Tamer Özsu

Learning-based Schema
Matching

n Use machine learning techniques to determine
schema matches

n Classification problem: classify concepts from
various schemas into classes according to their
similarity. Those that fall into the same class
represent similar concepts

n Similarity is defined according to features of
data instances

n Classification is “learned” from a training set

CS742 – Distributed & Parallel DBMS Page 9.24 M. Tamer Özsu

Learning-based Schema
Matching

CS742 – Distributed & Parallel DBMS Page 9.25 M. Tamer Özsu

Combined Schema Matching
Approaches

n Use multiple matchers

l Each matcher focuses on one area (name, etc)

n Meta-matcher integrates these into one
prediction

n Integration may be simple (take average of
similarity values) or more complex (see Fagin’s
work)

CS742 – Distributed & Parallel DBMS Page 9.26 M. Tamer Özsu

Schema Integration

n Use the correspondences to create a GCS
n Mainly a manual process, although rules can help

CS742 – Distributed & Parallel DBMS Page 9.27 M. Tamer Özsu

Binary Integration Methods

CS742 – Distributed & Parallel DBMS Page 9.28 M. Tamer Özsu

N-ary Integration Methods

CS742 – Distributed & Parallel DBMS Page 9.29 M. Tamer Özsu

Schema Mapping

n Mapping data from each local database
(source) to GCS (target) while preserving
semantic consistency as defined in both source
and target.

n Data warehouses ⇒ actual translation

n Data integration systems ⇒ discover
mappings that can be used in the query
processing phase

n Mapping creation

n Mapping maintenance

CS742 – Distributed & Parallel DBMS Page 9.30 M. Tamer Özsu

Mapping Creation

Given
l A source LCS

l A target GCS

l A set of value correspondences discovered
during schema matching phase

Produce a set of queries that, when executed, will
create GCS data instances from the source
data.

We are looking, for each Tk, a query Qk that is
defined on a (possibly proper) subset of the
relations in S such that, when executed, will
generate data for Ti from the source relations

[S = {Si}]
[T = {Ti}]

[V = {Vi}]

CS742 – Distributed & Parallel DBMS Page 9.31 M. Tamer Özsu

Mapping Creation Algorithm

General idea:

n Consider each Tk in turn. Divide Vk into

subsets such that each
specifies one possible way that values of Tk can
be computed.

n Each can be mapped to a query that,
when executed, would generate some of Tk’s
data.

n Union of these queries gives

{V 1
k , . . . , V

n
k } V j

k

V j
k qjk

Qk(= [jq
j
k)

